Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
Más filtros

Medicinas Tradicionales
Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Clin Pharmacol Drug Dev ; 13(3): 297-306, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38176912

RESUMEN

Tacrolimus is metabolized by cytochrome P450 3A (CYP3A) and is susceptible to interactions with the CYP3A and P-glycoprotein inducer St. John's Wort (SJW). CYP3A isozymes are predominantly expressed in the small intestine and liver. Prolonged-release tacrolimus (PR-Tac) is largely absorbed in distal intestinal segments and is less susceptible to CYP3A inhibition. The effect of induction by SJW is unknown. In this randomized, crossover trial, 18 healthy volunteers received single oral tacrolimus doses (immediate-release [IR]-Tac or PR-Tac, 5 mg each) alone and during induction by SJW. Concentrations were quantified using ultra-high performance liquid chromatography coupled with tandem mass spectrometry and non-compartmental pharmacokinetics were evaluated. SJW decreased IR-Tac exposure (area under the concentration-time curve) to 73% (95% confidence interval 60%-88%) and maximum concentration (Cmax ) to 61% (52%-73%), and PR-Tac exposure to 67% (55%-81%) and Cmax to 69% (58%-82%), with no statistical difference between the 2 formulations. The extent of interaction appeared to be less pronounced in volunteers with higher baseline CYP3A4 activity and in CYP3A5 expressors. In contrast to CYP3A inhibition, CYP3A induction by SJW showed a similar extent of interaction with both tacrolimus formulations. A higher metabolic baseline capacity appeared to attenuate the extent of induction by SJW.


Asunto(s)
Hypericum , Tacrolimus , Humanos , Citocromo P-450 CYP3A/metabolismo , Interacciones Farmacológicas , Hypericum/química , Hypericum/metabolismo , Extractos Vegetales , Tacrolimus/farmacocinética , Estudios Cruzados
2.
Mol Pharmacol ; 105(1): 14-22, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37863663

RESUMEN

The pregnane X receptor (PXR) is a ligand-activated regulator of cytochrome P450 (CYP)3A enzymes. Among the ligands of human PXR is hyperforin, a constituent of St John's wort (SJW) extracts and potent inducer of human CYP3A4. It was the aim of this study to compare the effect of hyperforin and SJW formulations controlled for its content on CYP3A23-3A1 in rats. Hyperiplant was used as it contains a high hyperforin content and Rebalance because it is controlled for a low hyperforin content. In silico analysis revealed a weak hyperforin-rPXR binding affinity, which was further supported in cell-based reporter gene assays showing no hyperforin-mediated reporter activation in presence of rPXR. However, cellular exposure to Hyperiplant and Rebalance transactivated the CYP3A reporter 3.8-fold and 2.8-fold, respectively, and they induced Cyp3a23-3a1 mRNA expression in rat hepatoma cells compared with control 48-fold and 18-fold, respectively. In Wistar rats treated for 10 days with 400 mg/kg of Hyperiplant, we observed 1.8 times the Cyp3a23-3a1 mRNA expression, a 2.6-fold higher CYP3A23-3A1 protein amount, and a 1.6-fold increase in activity compared with controls. For Rebalance we only observed a 1.8-fold hepatic increase of CYP3A23-3A1 protein compared with control animals. Even though there are differing effects on rCyp3a23-3a1/CYP3A23-3A1 in rat liver reflecting the hyperforin content of the SJW extracts, the modulation is most likely not linked to an interaction of hyperforin with rPXR. SIGNIFICANCE STATEMENT: Treatment with St John's wort (SJW) has been reported to affect CYP3A expression and activity in rats. Our comparative study further supports this finding but shows that the pregnane X receptor-ligand hyperforin is not the driving force for changes in rat CYP3A23-3A1 expression and function in vivo and in vitro. Importantly, CYP3A induction mimics findings in humans, but our results suggest that another so far unknown constituent of SJW is responsible for the expression- and function-modifying effects in rat liver.


Asunto(s)
Antineoplásicos , Hypericum , Ratas , Humanos , Animales , Citocromo P-450 CYP3A/metabolismo , Receptor X de Pregnano , Hypericum/metabolismo , Ligandos , Ratas Wistar , ARN Mensajero , Extractos Vegetales/farmacología , Extractos Vegetales/química
3.
Microbiol Spectr ; 11(3): e0060723, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37199656

RESUMEN

Plants are no longer considered standalone entities; instead, they harbor a diverse community of plant growth-promoting rhizobacteria (PGPR) that aid them in nutrient acquisition and can also deliver resilience. Host plants recognize PGPR in a strain-specific manner; therefore, introducing untargeted PGPR might produce unsatisfactory crop yields. Consequently, to develop a microbe-assisted Hypericum perforatum L. cultivation technique, 31 rhizobacteria were isolated from the plant's high-altitude Indian western Himalayan natural habitat and in vitro characterized for multiple plant growth-promoting attributes. Among 31 rhizobacterial isolates, 26 produced 0.59 to 85.29 µg mL-1 indole-3-acetic acid and solubilized 15.77 to 71.43 µg mL-1 inorganic phosphate; 21 produced 63.12 to 99.92% siderophore units, and 15 exhibited 103.60 to 1,296.42 nmol α-ketobutyrate mg-1 protein h-1 1-aminocyclopropane-1-carboxylate deaminase (ACCD) activity. Based on superior plant growth-promoting attributes, eight statistically significant multifarious PGPR were further evaluated for an in planta plant growth-promotion assay under poly greenhouse conditions. Plants treated with Kosakonia cowanii HypNH10 and Rahnella variigena HypNH18 showed, by significant amounts, the highest photosynthetic pigments and performance, eventually leading to the highest biomass accumulation. Comparative genome analysis and comprehensive genome mining unraveled their unique genetic features, such as adaptation to the host plant's immune system and specialized metabolites. Moreover, the strains harbor several functional genes regulating direct and indirect plant growth-promotion mechanisms through nutrient acquisition, phytohormone production, and stress alleviation. In essence, the current study endorsed strains HypNH10 and HypNH18 as cogent candidates for microbe-assisted H. perforatum cultivation by highlighting their exclusive genomic signatures, which suggest their unison, compatibility, and multifaceted beneficial interactions with their host and support the excellent plant growth-promotion performance observed in the greenhouse trial. IMPORTANCE Hypericum perforatum L. (St. John's wort) herbal preparations are among the top-selling products to treat depression worldwide. A significant portion of the overall Hypericum supply is sourced through wild collection, prompting a rapid decline in their natural stands. Crop cultivation seems lucrative, although cultivable land and its existing rhizomicrobiome are well suited for traditional crops, and its sudden introduction can create soil microbiome dysbiosis. Also, the conventional plant domestication procedures with increased reliance on agrochemicals can reduce the diversity of the associated rhizomicrobiome and plants' ability to interact with plant growth-promoting microorganisms, leading to unsatisfactory crop production alongside harmful environmental effects. Cultivating H. perforatum with crop-associated beneficial rhizobacteria can reconcile such concerns. Based on a combinatorial in vitro, in vivo plant growth-promotion assay and in silico prediction of plant growth-promoting traits, here we recommend two H. perforatum-associated PGPR, Kosakonia cowanii HypNH10 and Rahnella variigena HypNH18, to extrapolate as functional bioinoculants for H. perforatum sustainable cultivation.


Asunto(s)
Antineoplásicos , Hypericum , Hypericum/química , Hypericum/metabolismo , Desarrollo de la Planta , Genómica
4.
Plant Physiol ; 192(4): 2971-2988, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37061818

RESUMEN

Polyprenylated xanthones are natural products with a multitude of biological and pharmacological activities. However, their biosynthetic pathway is not completely understood. In this study, metabolic profiling revealed the presence of 4-prenylated 1,3,5,6-tetrahydroxyxanthone derivatives in St. John's wort (Hypericum perforatum) root extracts. Transcriptomic data mining led to the detection of 5 variants of xanthone 4-prenyltransferase (HpPT4px) comprising 4 long variants (HpPT4px-v1 to HpPT4px-v4) and 1 short variant (HpPT4px-sh). The full-length sequences of all 5 variants were cloned and heterologously expressed in yeast (Saccharomyces cerevisiae). Microsomes containing HpPT4px-v2, HpPT4px-v4, and HpPT4px-sh catalyzed the addition of a prenyl group at the C-4 position of 1,3,5,6-tetrahydroxyxanthone; 1,3,5-trihydroxyxanthone; and 1,3,7-trihydroxyxanthone, whereas microsomes harboring HpPT4px-v1 and HpPT4px-v3 additionally accepted 1,3,6,7-tetrahydroxyxanthone. HpPT4px-v1 produced in Nicotiana benthamiana displayed the same activity as in yeast, while HpPT4px-sh was inactive. The kinetic parameters of HpPT4px-v1 and HpPT4px-sh chosen as representative variants indicated 1,3,5,6-tetrahydroxyxanthone as the preferred acceptor substrate, rationalizing that HpPT4px catalyzes the first prenylation step in the biosynthesis of polyprenylated xanthones in H. perforatum. Dimethylallyl pyrophosphate was the exclusive prenyl donor. Expression of the HpPT4px transcripts was highest in roots and leaves, raising the question of product translocation. C-terminal yellow fluorescent protein fusion of HpPT4px-v1 localized to the envelope of chloroplasts in N. benthamiana leaves, whereas short, truncated, and masked signal peptides led to the disruption of plastidial localization. These findings pave the way for a better understanding of the prenylation of xanthones in plants and the identification of additional xanthone-specific prenyltransferases.


Asunto(s)
Dimetilaliltranstransferasa , Hypericum , Xantonas , Hypericum/genética , Hypericum/metabolismo , Dimetilaliltranstransferasa/genética , Dimetilaliltranstransferasa/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Xantonas/metabolismo , Xantonas/farmacología , Extractos Vegetales/farmacología
5.
J Trace Elem Med Biol ; 78: 127151, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36948046

RESUMEN

BACKGROUND: Hexavalent chromium known as oxidizing agent is able to form reactive oxygen species. Aronia melanocarpa and Hypericum perforatum are two plants known for their antioxidant effects. Our study aimed to establish if CrVI induces apoptosis and structural changes in thyrocytes and if its effect can be counteracted by the administration of both extracts. MATERIALS AND METHODS: Wistar rats divided in five groups: C - distilled water (DW), Cr - 75 mg/L CrVI in DW for 3 months, Cr 2 - 75 mg/L CrVI in DW for 3 months followed by 1 month DW, CrA - 3 months 75 mg/L CrVI in DW and 1 month Aronia 2.5% extract, CrH - 3 months 75 mg/L CrVI in DW and 1 month Hypericum 2.5% extract. Histological assessment and qRT-PCR for evaluation of BAX and Bcl2 protein levels performed on thyroid samples. RESULTS: The Cr and Cr2 groups were those with altered cytoarchitecture: increase in the diameter of many thyroid follicles, a decrease in their number, a decrease in the height of the follicular cells. The histological examination of the CrH group revealed almost recovery of structural architecture. The BAX gene levels were higher in the Cr and Cr2 groups indicating the apoptotic activity of chromium. In extract receiving groups the BAX gene expressions were significantly lower, but the lowest level presented the CrH group. Bcl2 gene expression levels indicate antiapoptotic activity being elevated in the Cr group, followed by CrA, Cr2, and CrH groups. The BAX/Bcl2 ratio which significantly increased in the case of the Cr and Cr2 group compared to the groups that were administered the two plant extracts. CONCLUSION: The results obtained in this study confirm that CrVI has toxic effects on thyroid endocrine cells and H. perforatum has stronger antioxidant properties against the action of hexavalent chromium in thyrocytes than A. melanocarpa.


Asunto(s)
Hypericum , Photinia , Células Epiteliales Tiroideas , Ratas , Animales , Photinia/metabolismo , Hypericum/metabolismo , Ratas Wistar , Proteína X Asociada a bcl-2 , Células Epiteliales Tiroideas/metabolismo , Antioxidantes/metabolismo , Cromo/farmacología , Cromo/análisis , Agua
6.
Biomed Chromatogr ; 37(2): e5536, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36264709

RESUMEN

α-glucosidase inhibitors (AGIs) are widely used for the treatment of type 2 diabetes, but their side effects have made it to develop novel and alternative AGIs immediately. In this study, the extract of Hypericum perforatum L. (HPE) has been confirmed to have α-glucosidase inhibitory activity in vitro and in vivo. Seven active compounds, rutin, hyperoside, isoquercitrin, avicularin, quercitrin, quercetin, and biapigenin, were screened based on a bio-affinity chromatography column with α-glucosidase enzyme-conjugated solid phase and UPLC/MS, which exhibited excellent α-glycosidase inhibitory effects by the determined IC50 values. The mechanism of α-glycosidase inhibitory activity of biapigenin was studied for the first time. The results showed that biapigenin was a high-potential, reversible, and mixed enzyme inhibitor. Analysis by molecular docking further revealed that hydrophobic interactions were generated by interactions between biapigenin and amino acid residues LYS156, PHE303, PHE314, and LEU313. In addition, hydrogen bonding occurred between biapigenin and α-glucosidase amino acid residues ASP307, SER241, and LYS156. This research identified that biapigenin could be a novel AGI and further applied to the development of potential anti-diabetic drugs. Furthermore, our studies established a rapid in vitro screening method for AGIs from plants.


Asunto(s)
Inhibidores de Glicósido Hidrolasas , Hypericum , Extractos Vegetales , alfa-Glucosidasas/metabolismo , Cromatografía de Afinidad/métodos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/farmacología , Hypericum/química , Hypericum/metabolismo , Simulación del Acoplamiento Molecular , Extractos Vegetales/farmacología , Extractos Vegetales/química , Aceites de Plantas , Espectrometría de Masas/métodos
7.
Toxicol Sci ; 190(1): 54-63, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36073954

RESUMEN

St. John's wort (SJW) is a medicinal herb remedy for mild depression. However, long-term use of SJW has raised safety concerns in clinical practice because of drug-drug interactions. Excessive use of acetaminophen (APAP) causes severe hepatotoxicity, but whether SJW modulates APAP-induced liver injury remains unclear. In this study, the effect of long-term SJW administration on APAP-induced acute hepatotoxicity and the involved mechanisms were investigated. Morphological and biochemical assessments clearly demonstrated that SJW exacerbates APAP-induced toxicity. Moreover, SJW markedly promoted glutathione depletion and increased the levels of the APAP-cysteine and APAP-N-acetylcysteinyl adducts in mice, which enhanced APAP metabolic activation and aggravated APAP-induced liver injury. To further elucidate APAP metabolic activation in liver injury induced by SJW, the activities and expression levels of CYP2E1 and CYP3A were measured. The results showed that the activities and expression levels of CYP2E1 and CYP3A were increased after SJW treatment. Furthermore, the PXR-CYP signaling pathway was activated by SJW, and its downstream target genes were upregulated. Collectively, this study demonstrated that the long-term administration of SJW extract led to the metabolic activation of APAP and significantly exacerbated APAP-induced liver injury, which may suggest caution for the clinical use of SJW and APAP.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Hypericum , Ratones , Animales , Acetaminofén/toxicidad , Acetaminofén/metabolismo , Hypericum/metabolismo , Citocromo P-450 CYP2E1 , Citocromo P-450 CYP3A/metabolismo
8.
Plant Physiol Biochem ; 185: 357-367, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35753284

RESUMEN

The Hypericum species (H. perforatum, H. olympicum, and H. orientale) were cultured in hydroponics with excess nickel (Ni, 1 or 100 µM Ni) to compare the metallic and metabolite content. Identical species were collected outdoor to assess the same parameters (including uranium and lanthanides) with total of 53 elements. The results showed that Ni was less accumulated in shoots in hydroponics (translocation factor of 0.01-0.25) and the highest absolute amount was detected in H. olympicum. Essential elements were typically depleted by Ni excess, but Co and Na increased. Soluble phenols, sum of flavonols and catechin rather increased in response to Ni but quercetin glycosides and free amino acids decreased in the shoots of H. olympicum mainly. Comparison of laboratory and outdoor growing plants showed more phenols in outdoor samples but not in H. olympicum and individual metabolites differed too. Plants cultured in hydroponics contained lower amount of non-essential, toxic and rare earth elements (30-100-fold) and shoot bioaccumulation factor in outdoor samples was low for most elements (<0.01) but not for Cd and Pt. Data reveal that H. olympicum is a potent source of phenolic metabolites whereas H. orientale accumulates many elements (38 out of 53 elements).


Asunto(s)
Hypericum , Hidroponía , Hypericum/metabolismo , Níquel/metabolismo , Fenoles/metabolismo , Raíces de Plantas/metabolismo , Plantas/metabolismo
9.
Eur J Med Chem ; 239: 114532, 2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-35749988

RESUMEN

Dearomatized isoprenylated acylphloroglucinols (DIAPs) are specific natural products mainly distributed in the plants of genus Hypericum. In this study, guided by HPLC-UV screening, 46 DIAPs (approximately 70% of all DIAPs) including 20 new ones and an unprecedented architecture, were discovered from the roots of Hypericum henryi, which were elucidated by comprehensive spectroscopic, X-ray crystallography, and ECD methods. Compounds 1-7, 39, and 41-42 exhibited remarkable cytotoxicities (IC50 = 0.84-5.63 µM) in human colon cancer HCT116 cells, in which 2 and 6 possessed selective cytotoxicities towards colon cancer cells. The preliminary structure-activity relationships of these tested compounds were discussed. In addition, mechanistic investigations demonstrated that 2 and 6 could significantly suppress the expressions of NFκB, FAT1, and promoted novel tumor suppressor gene PDCD4 in HCT116 cells. Furthermore, in HCT116 colon xenograft-bearing mouse model, treatments with 2 and 6 reduced the growth of xenograft tumors in dose-dependent manner. Expressions of FAT1 in tumors were also decreased in mice treated with 2 and 6, suggesting their anti-tumor effects were via FAT1 signaling pathway. In conclusion, this is the first report on the mechanistic and in vivo studies of DIAP, indicating that these metabolites can be considered as a new type of anti-colon cancer lead agents for further drug development.


Asunto(s)
Antineoplásicos , Neoplasias del Colon , Hypericum , Animales , Antineoplásicos/farmacología , Proteínas Reguladoras de la Apoptosis/metabolismo , Cadherinas/metabolismo , Línea Celular Tumoral , Neoplasias del Colon/tratamiento farmacológico , Humanos , Hypericum/química , Hypericum/metabolismo , Ratones , Floroglucinol/química , Floroglucinol/farmacología , Proteínas de Unión al ARN/metabolismo , Transducción de Señal
10.
New Phytol ; 235(2): 646-661, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35377483

RESUMEN

The meroterpenoid hyperforin is responsible for the antidepressant activity of St John's wort extracts, but the genes controlling its biosynthesis are unknown. Using genome mining and biochemical work, we characterize two biosynthetic gene clusters (BGCs) that encode the first three steps in the biosynthesis of hyperforin precursors. The findings of syntenic and phylogenetic analyses reveal the parallel assembly of the two BGCs. The syntenous BGC in Mesua ferrea indicates that the first cluster was assembled before the divergence of the Hypericaceae and Calophyllaceae families. The assembly of the second cluster is the result of a coalescence of genomic fragments after a major duplication event. The differences between the two BGCs - in terms of gene expression, response to methyl jasmonate, substrate specificity and subcellular localization of key enzymes - suggest that the presence of the two clusters could serve to generate separate pools of precursors. The parallel assembly of two BGCs with similar compositions in a single plant species is uncommon, and our work provides insights into how and when these gene clusters form. Our discovery helps to advance our understanding of the evolution of plant specialized metabolism and its genomic organization. Additionally, our results offer a foundation from which hyperforin biosynthesis can be more fully understood, and which can be used in future metabolic engineering applications.


Asunto(s)
Hypericum , Hypericum/genética , Hypericum/metabolismo , Familia de Multigenes , Floroglucinol/análogos & derivados , Floroglucinol/metabolismo , Filogenia , Extractos Vegetales/química , Aceites de Plantas/metabolismo , Terpenos/metabolismo
11.
Curr Neuropharmacol ; 20(9): 1736-1751, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-34370637

RESUMEN

The management of neuropsychiatric disorders relies heavily on pharmacotherapy. The use of herbal products as complimentary medicine, often concomitantly, is common among patients taking prescription neuropsychiatric drugs. Herb-drug interaction, a clinical consequence of this practice, may jeopardize the success of pharmacotherapy in neuropsychiatry. Besides the wellknown ability of phytochemicals to inhibit and/or induce drug-metabolizing enzymes and transport proteins, several phytoconstituents are capable of exerting pharmacological effects on the central nervous system. This study reviewed the relevant literature and identified 13 commonly used herbal products - celery, echinacea, ginkgo, ginseng, hydroxycut, kava, kratom, moringa, piperine, rhodiola, St. John's wort, terminalia/commiphora ayurvedic mixture and valerian - which have shown clinically relevant interactions with prescription drugs used in the management of neuropsychiatric disorders. The consequent pharmacokinetic and pharmacodynamic interactions with orthodox medications often result in deleterious clinical consequences. This underscores the importance of caution in herb-drug co-medication.


Asunto(s)
Interacciones de Hierba-Droga , Hypericum , Ginkgo biloba , Humanos , Hypericum/metabolismo
12.
Biomolecules ; 11(9)2021 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-34572496

RESUMEN

The plant hormone jasmonic acid (JA) fine tunes the growth-defense dilemma by inhibiting plant growth and stimulating the accumulation of secondary compounds. We investigated the interactions between JA and phytochrome B signaling on growth and the accumulation of selected secondary metabolites in Hypericum perforatum L., a medically important plant, by spraying plants with methyl jasmonate (MeJA) and by adding far-red (FR) lighting. MeJA inhibited plant growth, decreased fructose concentration, and enhanced the accumulation of most secondary metabolites. FR enhanced plant growth and starch accumulation and did not decrease the accumulation of most secondary metabolites. MeJA and FR acted mostly independently with no observable interactions on plant growth or secondary metabolite levels. The accumulation of different compounds (e.g., hypericin, flavonols, flavan-3-ols, and phenolic acid) in shoots, roots, and root exudates showed different responses to the two treatments. These findings indicate that the relationship between growth and secondary compound accumulation is specific and depends on the classes of compounds and/or their organ location. The combined application of MeJA and FR enhanced the accumulation of most secondary compounds without compromising plant growth. Thus, the negative correlations between biomass and the content of secondary compounds predicted by the growth-defense dilemma were overcome.


Asunto(s)
Ciclopentanos/farmacología , Hypericum/crecimiento & desarrollo , Hypericum/metabolismo , Luz , Oxilipinas/farmacología , Exudados de Plantas/metabolismo , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Acetatos/farmacología , Biomasa , Vías Biosintéticas/efectos de los fármacos , Carbohidratos/análisis , Hypericum/efectos de los fármacos , Hypericum/efectos de la radiación , Iones , Tamaño de los Órganos/efectos de los fármacos , Fenoles/análisis , Pigmentos Biológicos/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/efectos de la radiación , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/efectos de la radiación
13.
FEBS Lett ; 595(20): 2608-2615, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34390592

RESUMEN

Xanthones are compounds with a diphenyl ether skeleton mainly found in plants and often glycosylated at carbon atoms. Although many C-glycosyltransferases (CGTs) participating in flavone C-glycosylation have been identified, MiCGT from Mangifera indica, adding sugar to an open-chain benzophenone skeleton, is the only identified xanthone biosynthesis-related CGT. Here, we identified two CGTs from Hypericum perforatum that add sugar to the closed-ring xanthone, but not benzophenone. These CGTs catalyze sugar transfer to the C-4 position of norathyriol (1,3,6,7-tetrahydroxyxanthone) to form isomangiferin (1,3,6,7-tetrahydroxyxanthone 4-C-glucoside), a major xanthone C-glucoside. This is the first study to report CGTs that mediate the direct C-glycosylation of xanthone.


Asunto(s)
Glicosiltransferasas/metabolismo , Hypericum/metabolismo , Xantonas/metabolismo , Secuencia de Aminoácidos , Catálisis , Glicosilación , Glicosiltransferasas/química , Filogenia , Homología de Secuencia de Aminoácido
14.
Med Sci Monit ; 27: e928402, 2021 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-33657087

RESUMEN

BACKGROUND This network pharmacology study aimed to identify the active compounds and molecular mechanisms involved in the effects of Hypericum japonicum on cholestatic hepatitis. We validated the findings in an alpha-naphthylisothiocyanate (ANIT) rat model of hepatotoxicity. MATERIAL AND METHODS The chemical constituents and targets of H. japonicum and target genes previously associated with cholestatic hepatitis were retrieved from public databases. A network was constructed using Cytoscape 3.7.2 software and the STRING database and potential protein functions were analyzed based on the public platform of bioinformatics. ANIT was used to induce cholestatic hepatitis in a rat model using 36 Sprague-Dawley rats, and this model was used to investigate intervention with 3 doses of quercetin (low-dose, 50 mg/kg; medium-dose, 100 mg/kg; and high-dose, 200 mg/kg), the main active component of H. japonicum. Levels of serum biochemical indexes were measured by commercial kits, and the messenger RNA (mRNA) levels of markers of liver and mitochondrial function and oxidative stress were detected by real-time reverse transcription-polymerase chain reaction (RT-PCR). RESULTS The main active ingredients of H. japonicum were quercetin, kaempferol, and tetramethoxyluteolin, and their key targets included prostaglandin G/H synthase 2 (PTGS2), B-cell lymphoma-2 (BCL2), cholesterol 7-alpha hydroxylase (CYP7A1), and farnesoid X receptor (FXR). Quercetin intervention promoted recovery from cholestatic hepatitis. CONCLUSIONS The findings from this research provide support for future research on the roles of quercetin, kaempferol, and tetramethoxyluteolin in human liver disease and the roles of the PTGS2, BCL2, CYP7A1, and FXR genes in cholestatic hepatitis.


Asunto(s)
Colestasis/tratamiento farmacológico , Hepatitis/tratamiento farmacológico , Hypericum/química , 1-Naftilisotiocianato/farmacología , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Colangitis/tratamiento farmacológico , Modelos Animales de Enfermedad , Hepatitis/metabolismo , Hepatocitos/metabolismo , Hypericum/metabolismo , Quempferoles/farmacología , Hígado/metabolismo , Hepatopatías/metabolismo , Luteolina/farmacología , Masculino , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Quercetina/farmacología , Ratas , Ratas Sprague-Dawley
15.
Cell Metab ; 33(3): 565-580.e7, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33657393

RESUMEN

Stimulation of adipose tissue thermogenesis is regarded as a promising avenue in the treatment of obesity. However, pharmacologic engagement of this process has proven difficult. Using the Connectivity Map (CMap) approach, we identified the phytochemical hyperforin (HPF) as an anti-obesity agent. We found that HPF efficiently promoted thermogenesis by stimulating AMPK and PGC-1α via a Ucp1-dependent pathway. Using LiP-SMap (limited proteolysis-mass spectrometry) combined with a microscale thermophoresis assay and molecular docking analysis, we confirmed dihydrolipoamide S-acetyltransferase (Dlat) as a direct molecular target of HPF. Ablation of Dlat significantly attenuated HPF-mediated adipose tissue browning both in vitro and in vivo. Furthermore, genome-wide association study analysis indicated that a variation in DLAT is significantly associated with obesity in humans. These findings suggest that HPF is a promising lead compound in the pursuit of a pharmacological approach to promote energy expenditure in the treatment of obesity.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Floroglucinol/análogos & derivados , Transducción de Señal/efectos de los fármacos , Terpenos/farmacología , Termogénesis/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Sitios de Unión , Frío , Acetiltransferasa de Residuos Dihidrolipoil-Lisina/química , Acetiltransferasa de Residuos Dihidrolipoil-Lisina/metabolismo , Humanos , Hypericum/química , Hypericum/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Simulación del Acoplamiento Molecular , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Obesidad/patología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Floroglucinol/química , Floroglucinol/metabolismo , Floroglucinol/farmacología , Floroglucinol/uso terapéutico , Terpenos/química , Terpenos/metabolismo , Terpenos/uso terapéutico , Termogénesis/genética , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo , Regulación hacia Arriba/efectos de los fármacos
16.
Drug Des Devel Ther ; 14: 5299-5314, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33299301

RESUMEN

BACKGROUND: Chronic psychosocial stress impairs memory function and leads to a depression-like phenotype induced by a persistent status of oxidative stress. Hypericum perforatum L. (St. John's wort) is widely used to relieve symptoms of anxiety and depression; however, its long-term use is associated with adverse effects. Hypericum triquetrifolium Turra is closely related to H. perforatum. Both plants belong to Hypericaceae family and share many biologically active compounds. Previous work by our group showed that methanolic extracts of H. triquetrifolium have potent antioxidant activity as well as high hypericin content, a component that proved to have stress-relieving and antidepressant effects by other studies. Therefore, we hypothesized that H. triquetrifolium would reduce stress-induced cognitive impairment in a rat model of chronic stress. OBJECTIVE: To determine whether chronic treatment with H. triquetrifolium protects against stress-associated memory deficits and to investigate a possible mechanism. METHODS: The radial arm water maze (RAWM) was used to test learning and memory in rats exposed to daily stress using the resident-intruder paradigm. Stressed and unstressed rats received chronic H. triquetrifolium or vehicle. We also measured levels of brain-derived neurotrophic factor (BDNF) in the hippocampus, cortex and cerebellum. RESULTS: Neither chronic stress nor chronic H. triquetrifolium administration affected performance during acquisition. However, memory tests in the RAWM showed that chronic stress impaired different post-encoding memory stages. H. triquetrifolium prevented this impairment. Furthermore, hippocampal BDNF levels were markedly lower in stressed animals than in unstressed animals, and chronic administration of H triquetrifolium chronic administration protected against this reduction. No significant difference was observed in the effects of chronic stress and/or H. triquetrifolium treatment on BDNF levels in the cerebellum and cortex. CONCLUSION: H. triquetrifolium extract can oppose stress-associated hippocampus-dependent memory deficits in a mechanism that may involve BDNF in the hippocampus.


Asunto(s)
Antidepresivos/farmacología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Hypericum/química , Trastornos de la Memoria/prevención & control , Extractos Vegetales/farmacología , Estrés Psicológico/tratamiento farmacológico , Animales , Antidepresivos/química , Antidepresivos/aislamiento & purificación , Factor Neurotrófico Derivado del Encéfalo/análisis , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hypericum/metabolismo , Masculino , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Ratas , Ratas Wistar , Estrés Psicológico/metabolismo
17.
Molecules ; 25(21)2020 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-33158186

RESUMEN

1H-NMR is a very reproducible spectroscopic method and, therefore, a powerful tool for the metabolomic analysis of biological samples. However, due to the high complexity of natural samples, such as plant extracts, the evaluation of spectra is difficult because of signal overlap. The new NMR "Pure Shift" methods improve spectral resolution by suppressing homonuclear coupling and turning multiplets into singlets. The PSYCHE (Pure Shift yielded by Chirp excitation) and the Zangger-Sterk pulse sequence were tested. The parameters of the more suitable PSYCHE experiment were optimized, and the extracts of 21 Hypericum species were measured. Different evaluation criteria were used to compare the suitability of the PSYCHE experiment with conventional 1H-NMR. The relationship between the integral of a signal and the related bin value established by linear regression demonstrates an equal representation of the integrals in binned PSYCHE spectra compared to conventional 1H-NMR. Using multivariate data analysis based on both techniques reveals comparable results. The obtained data demonstrate that Pure Shift spectra can support the evaluation of conventional 1H-NMR experiments.


Asunto(s)
Hypericum/metabolismo , Metaboloma , Metabolómica , Resonancia Magnética Nuclear Biomolecular
18.
Genes (Basel) ; 11(10)2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-33081197

RESUMEN

Hypericum perforatum L. commonly known as Saint John's Wort (SJW), is an important medicinal plant that has been used for more than 2000 years. Although H. perforatum produces several bioactive compounds, its importance is mainly linked to two molecules highly relevant for the pharmaceutical industry: the prenylated phloroglucinol hyperforin and the naphtodianthrone hypericin. The first functions as a natural antidepressant while the second is regarded as a powerful anticancer drug and as a useful compound for the treatment of Alzheimer's disease. While the antidepressant activity of SJW extracts motivate a multi-billion dollar industry around the world, the scientific interest centers around the biosynthetic pathways of hyperforin and hypericin and their medical applications. Here, we focus on what is known about these processes and evaluate the possibilities of combining state of the art omics, genome editing, and synthetic biology to unlock applications that would be of great value for the pharmaceutical and medical industries.


Asunto(s)
Hypericum/química , Hypericum/genética , Fitoquímicos/biosíntesis , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Proteínas de Plantas/genética , Antracenos , Antidepresivos/farmacología , Antineoplásicos/farmacología , Europa (Continente) , Humanos , Hypericum/crecimiento & desarrollo , Hypericum/metabolismo , Perileno/análogos & derivados , Perileno/farmacología , Floroglucinol/análogos & derivados , Floroglucinol/farmacología , Terpenos/farmacología
19.
Plant J ; 104(6): 1472-1490, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33031578

RESUMEN

Benzoic acid-derived compounds, such as polyprenylated benzophenones and xanthones, attract the interest of scientists due to challenging chemical structures and diverse biological activities. The genus Hypericum is of high medicinal value, as exemplified by H. perforatum. It is rich in benzophenone and xanthone derivatives, the biosynthesis of which requires the catalytic activity of benzoate-coenzyme A (benzoate-CoA) ligase (BZL), which activates benzoic acid to benzoyl-CoA. Despite remarkable research so far done on benzoic acid biosynthesis in planta, all previous structural studies of BZL genes and proteins are exclusively related to benzoate-degrading microorganisms. Here, a transcript for a plant acyl-activating enzyme (AAE) was cloned from xanthone-producing Hypericum calycinum cell cultures using transcriptomic resources. An increase in the HcAAE1 transcript level preceded xanthone accumulation after elicitor treatment, as previously observed with other pathway-related genes. Subcellular localization of reporter fusions revealed the dual localization of HcAAE1 to cytosol and peroxisomes owing to a type 2 peroxisomal targeting signal. This result suggests the generation of benzoyl-CoA in Hypericum by the CoA-dependent non-ß-oxidative route. A luciferase-based substrate specificity assay and the kinetic characterization indicated that HcAAE1 exhibits promiscuous substrate preference, with benzoic acid being the sole aromatic substrate accepted. Unlike 4-coumarate-CoA ligase and cinnamate-CoA ligase enzymes, HcAAE1 did not accept 4-coumaric and cinnamic acids, respectively. The substrate preference was corroborated by in silico modeling, which indicated valid docking of both benzoic acid and its adenosine monophosphate intermediate in the HcAAE1/BZL active site cavity.


Asunto(s)
Acilcoenzima A/metabolismo , Coenzima A Ligasas/metabolismo , Hypericum/metabolismo , Proteínas de Plantas/metabolismo , Xantonas/metabolismo , Clonación Molecular , Coenzima A Ligasas/genética , Citosol/enzimología , Hypericum/enzimología , Redes y Vías Metabólicas , Simulación del Acoplamiento Molecular , Peroxisomas/enzimología , Filogenia , Proteínas de Plantas/genética
20.
Molecules ; 25(18)2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-32948004

RESUMEN

St. John's wort (Hypericum perforatum L.) is a medicinal plant that alleviates depression and other disorders due to its abundance of active ingredients. Hyperforin, rutin, and melatonin are the main active, and important, ingredients in St. John's wort that alleviate depression. In order to investigate the optimal conditions for accumulating these active ingredients, design of experiments and response surface methodology (RSM) was employed in this study. Two-month-old St John's wort plants were cultivated in growth chambers at varying temperatures, light intensities, and nutrient solution concentrations before analysis by HPLC, for determining differences in hyperforin, rutin, and melatonin content. The results showed that hyperforin and rutin contents were significantly influenced by temperature (18-23 °C) and light intensity (49-147 µmol m-2 s-1 photosynthetic photon flux density (PPFD)), whereas Hoagland's nutrient solution concentration (25-75%) had little effect. The accumulation of melatonin might not be influenced by cultivation conditions. Light intensity and temperature are easily controlled environmental factors in artificial cultivation, both of which are related to secondary metabolite production in the plant. Based on RSM, the optimal conditions for the accumulation of hyperforin and rutin were obtained. The maximum content of hyperforin was 5.6 mg/g, obtained at a temperature of 19 °C, a nutrient solution concentration of 45%, and a light intensity of 49 µmol m-2 s-1 PPFD. The maximum content of rutin was 3.8 mg/g obtained at a temperature of 18 °C, a nutrient solution concentration of 50%, and a light intensity of 147 µmol m-2 s-1 PPFD. This evaluation of suitable conditions for the accumulation of bioactive compounds in St. John's wort can be applied to plant factories on a large scale.


Asunto(s)
Hypericum/química , Luz , Nutrientes/química , Floroglucinol/análogos & derivados , Rutina/metabolismo , Terpenos/metabolismo , Cromatografía Líquida de Alta Presión , Humanos , Hypericum/metabolismo , Melatonina/análisis , Melatonina/metabolismo , Floroglucinol/análisis , Floroglucinol/metabolismo , Extractos Vegetales/metabolismo , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Rutina/análisis , Espectrofotometría Ultravioleta , Temperatura , Terpenos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA